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Efficient GW calculations in two dimensional materials
through a stochastic integration of the screened potential
Alberto Guandalini 1,2✉, Pino D’Amico 1✉, Andrea Ferretti 1✉ and Daniele Varsano 1✉

Many-body perturbation theory methods, such as the G0W0 approximation, are able to accurately predict quasiparticle (QP)
properties of several classes of materials. However, the calculation of the QP band structure of two-dimensional (2D)
semiconductors is known to require a very dense BZ sampling, due to the sharp q-dependence of the dielectric matrix in the long-
wavelength limit (q→ 0). In this work, we show how the convergence of the QP corrections of 2D semiconductors with respect to
the BZ sampling can be drastically improved, by combining a Monte Carlo integration with an interpolation scheme able to
represent the screened potential between the calculated grid points. The method has been validated by computing the band gap
of three different prototype monolayer materials: a transition metal dichalcogenide (MoS2), a wide band gap insulator (hBN) and an
anisotropic semiconductor (phosphorene). The proposed scheme shows that the convergence of the gap for these three materials
up to 50meV is achieved by using k-point grids comparable to those needed by DFT calculations, while keeping the grid uniform.
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INTRODUCTION
The GW approximation1–4 is a well-established method for first
principle calculations of electronic excitations of materials5–7. It
provides access to quasi-particle energy bands as measured in
ARPES experiments8, satellites9,10, lifetimes11, and spectral func-
tions12,13. Since its development, the GW approximation has been
applied to a large class of systems ranging from bulk crystals to
nanostructures and molecules5,6. During the last decades, since
the isolation and characterization of graphene14, large attention
has been devoted to the study of 2D materials, due to their
remarkable electronic and optical properties15,16. Since then, the
GW approximation has been extensively applied to predict quasi-
particle properties of these materials17–27.
Often, 2D systems are treated using plane waves within the

supercell approach, in which an amount of vacuum is added in the
non periodic direction in order to remove spurious interactions
among replicas. In principle, accurate GW calculations require the
inclusion of a very large vacuum extension due to the long-range
nature of the Coulomb interaction. This difficulty has been
mitigated using truncated Coulomb potentials28,29 that allows
one to obtain converged results considering manageable inter-
layer distances (e.g., in the range of 10–20 Å). Furthermore,
characteristic properties of 2D screening, such as the dielectric
function approaching unity in the long-wavelength limit (see
below), are correctly reproduced in the supercell approach only if
the potential is appropriately truncated30,31. However, once the
Coulomb potential is truncated, the resulting sharp behaviour of
the screened potential can make the integration over the Brillouin
zone (BZ) rather inefficient22,31. Thus very large k-point grids are
needed to obtain converged results, making the computation of
quasiparticle (QP) properties within the GW method for 2D
systems computationally expensive32.
More in details, in a plane-wave basis set description, the

screening properties are described by the matrix elements of the
Fourier transform of the inverse dielectric function ϵ�1

GG0 ðqÞ, where
G is a reciprocal lattice vector and q a reciprocal vector of the first

BZ. In 2D systems, as already pointed out in the literature30,33–37,
the head [G ¼ G0 ¼ ð0; 0; 0Þ] of the dielectric matrix sharply
approaches unity in the long wavelength limit (Fig. 1, left panel),
and it is clear that with coarse meshes it is not possible to correctly
reproduce such limit with a regular discretization procedure. In
addition, the first matrix elements associated with lattice vectors
along the confined direction (G⊥) show a dispersion in the long-
wavelength limit, differently from the matrix elements with lattice
vectors oriented in the periodic directions (G∥) which are
approximately constant with respect to ∣q∣ (see Fig. 1). This trend
originates from the fact that min jG?j is significantly smaller than
min jGkj, due to the amount of vacuum added in the perpendi-
cular direction. Furthermore, we note that in 2D systems the long-
wavelength limit of the wing matrix of the dielectric matrix, ϵ�1

G0 ,
goes to zero as ∣q∣→ 0 (Fig. 1 right panel) leading to possible
numerical instabilities when these terms are multiplied by the
diverging Coulomb potential. All these features of the dielectric
matrix contribute to slow the convergence of the QP properties
with respect to the number of sampling points in the BZ, usually
discretized on a uniform grid.
In the last years, different strategies have been proposed to

accelerate the convergence of GW results for 2D systems with
respect to the number of k-point sampling. Rasmussen et al.35

proposed an analytic model for the long-wavelength limit of the
head of the inverse dielectric function ϵ�1

00 . This model has been
used to integrate the screened potential in a small region around
the Γ point, thus reducing the size of the k-point mesh needed to
converge the quasiparticle gap. However, denser meshes with
respect to DFT are still required (e.g., for the band gap of MoS2
converged results within 50meV were reported35 using 18 × 18 × 1
grids) as the analytic model is applied only to the G ¼ G0 ¼ 0
matrix element.
Da Jornada et al.36 proposed instead a fully numerical approach,

where a nonuniform q-sampling is used to increase the sampling
close to the Γ point. This approach has been applied not only to
the G ¼ G0 ¼ 0 element of the dielectric matrix, but to a submatrix
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(G⊥, G
0
?) such that ∣G⊥∣,jG0

?j<min jGkj. In Xia et al.38, the two
previous strategies are combined by performing a non-uniform
sub-sampling of the Brillouin zone around Γ followed by a non-
linear fitting procedure to model the q-dependence of the self-
energy terms (both exchange and correlation) instead of
modelling the behaviour of the dielectric matrix or screened
potential elements. Xing et al.39 proposed a staggered mesh
method for accelerating the BZ sampling convergence of the
correlation energies evaluated with diagrammatic perturbation
theory. While this work may be extended also for the calculation
of QP corrections, to the best of our knowledge, it has not yet
been applied in this context.
The methods of refs. 36,38 showed that meshes of size similar to

those needed to converge the DFT ground state calculations were
enough to obtain reliable results as demonstrated for the gap of
MoSe2 bilayer and MoS2 monolayer. However, both methods rely
on a nonuniform sampling, which add a convergence parameter
to be managed (the number of sub-sampling points). Moreover,
the region around Γ in which the additional sampling is performed
(and consequently the nonlinear fitting in Xia et al.) depends on
the size of the uniform grid. This may cause inconsistency
problems when comparing results from different grids, e.g., in a
convergence set of calculations, as increasing the grid the region
around Γ becomes smaller and smaller.
Motivated by these works, we show that the convergence of

QP properties of 2D semiconductors with respect to the number
of k-points in the BZ sampling can be accelerated, at the same
level of previous methods found in the literature36,38, by
combining the Monte Carlo integration techniques with an
interpolation scheme of the screened potential. Unlike the
methods described above, the proposed method allows one to
accelerate the convergence of the QP properties overcoming the
need to rely on a nonuniform sampling. In addition, the same
integration procedure (see below) is applied to the full BZ,
thereby avoiding the need to treat the Γ region differently from
the remaining part of the BZ. The proposed method has been
implemented in the Yambo package40,41.
The work is organized as follows: In “Methods”, we present the

main ideas of the proposed method and its implementation. In
“Results”, we show the performance of the method for three
prototype 2D semiconductors: a transition metal dichalcogenide
(MoS2), a wide band gap insulator (hBN), and an anisotropic
semiconductor (phosphorene). In section “Computational details”,
we provide the computational details, and in “Discussion”, we
draw the conclusions.

RESULTS
The W-av method
Within many-body perturbation theory, quasiparticle energies
are usually calculated either by solving numerically the QP
equation:

εQPnk ¼ εKSnk þ nkh jΣðεQPnk Þ � vKSxc nkj i; (1)

where {nk} are the KS wavefunctions and vKSxc is the exchange-
correlation potential, or by linearizing the equation at the first
order:

εQPnk ¼ εKSnk þ Znk nkh jΣðεKSnkÞ � vKSxc nkj i; (2)

where the renormalization factor Znk is defined as:

Znk ¼ 1� hnkj ∂ΣðωÞ
∂ω

jnki
����
ω¼ϵKSnk

" #�1

: (3)

To obtain the QP correction of a single-particle state nkj i in the
GW approximation, we need to evaluate the diagonal matrix
element of the self-energy,

ΣGWðωÞ ¼ �
Z þ1

�1

dω0

2πi
eiω

00þ ;Gðωþ ω0ÞWðω0Þ; (4)

where the screened interaction W is obtained from the expression
W(ω)= v+ vχ(ω)v= ϵ−1(ω)v, with the reducible polarizability χ(ω)
treated at the RPA level. The self energy can be split into the
exchange (x) and correlation (c) parts as

nkh jΣðωÞ nkj i � Σxnk þ ΣcnkðωÞ: (5)

Notably, both terms of the self-energy involve an integration over
the momentum transfer q. If we discretize the BZ with a 2D
uniform k-grid (centred at Γ), following the Monkhorst–Pack
scheme42, the momentum transfer q is discretized with the same
uniform grid, and the q integrals can be evaluated as finite sums.
Thus, the x self-energy is written as:

Σxnk ¼ � 1
NqΩ

X
v;q

X
G

jρnvðk;q;GÞj2vGðqÞ; (6)

where Ω is the volume of the unit cell in real space, v labels the
occupied bands, the ρnm matrix elements are defined as
ρnmðk;q;GÞ ¼ nkh jeiðqþGÞ�r mk � qj i, and Nq is the number of
points of the q grid. In order to eliminate periodic image
interactions for a 2D system, we take the Coulomb potential in
Eq. (6) as a truncated potential in a slab geometry. Its Fourier
transform reads28,29:

vGðqÞ ¼ 4π

jqþ Gj2 1� e�jqkþGkjL=2 cos½ðqz þ GzÞL=2�
h i

; (7)

where L is the length of the cell in the non-periodic z direction. As
the q-grid is 2D, we have qz= 0.
Nevertheless, Eq. (6) cannot be directly applied due to the

divergence of the Coulomb interaction at G= q= 0. There are
several approaches to treat such divergence40,43–46. Among these,
we select the v-average (v-av) method (called random integration
method and described in ref. 40). In this method, it is assumed that
the matrix elements ρnm(k, q,G) are smooth with respect to q, and
Eq. (6) is discretized in the following way

Σxnk ¼ � 1
NqΩ

X
v;q

X
G

jρnvðk;q;GÞj2vGðqÞ; (8)

where v is the average of the Coulomb interaction within a region
of the BZ centred around q of the Monkhorst–Pack grid:

vGðqÞ ¼ 1
DΓ

Z
DΓ

dq0vGðqþ q0Þ : (9)

Fig. 1 Selected elements of the real part of the static inverse
dielectric matrix of MoS2. Diagonal and wing elements elements
are plotted in the left and right panel respectively. Squares indicate
values obtained with a 6 × 6 × 1 grid, while dots with a
60 × 60 × 1 grid.

A. Guandalini et al.

2

npj Computational Materials (2023)    44 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



DΓ is the small area of the Monkhorst–Pack grid centred around Γ
(red area in Fig. 2). The integrals in Eq. (9) are evaluated via a 2D
Monte Carlo technique.
In addition, Eq. (8), as compared with Eq. (6), leads to a faster

convergence of the the exchange self-energy with respect to Nq,
since Eq. (8) takes into account the variation of the bare potential
within the region of the BZ centred around each q point and it has
been extensively applied also to three dimensional semiconduc-
tors47. For practical purposes, it is sufficient to evaluate the
averages up to a threshold jGj2=2< Ev�av

cut , since the Coulomb
interaction becomes a smooth function of q at large ∣G∣.
We now consider the correlation part of the self-energy, that is

the most problematic term for 2D semiconductors. Within the
plasmon-pole approximation (PPA) (we here adopt the
Godby–Needs formulation48) the correlation part of the screened
Coulomb potential, Wc(ω)=W(ω)− v, is written as:

Wc
GG0 ðq;ωÞ ¼ 2RGG0 ðqÞΩGG0 ðqÞ

ω2 � ½ΩGG0 ðqÞ � iη�2 ; (10)

where the limit η→ 0+ is implicitly assumed. Then, Σc can be
expressed as:

ΣcnkðωÞ ¼
1

NqΩ

X
G;G0 ;q

gnkGG0 ðq;ωÞWc
GG0 ðqÞ; (11)

where the matrix elements gnkGG0 are defined as:

gnkGG0 ðq;ωÞ ¼ � 1
2

P
m

´
ρnmðk;q;GÞΩGG0 ðqÞ ρ�nmðk;q;G0Þ

ω� εKSmk�q þ ½ΩGG0 ðqÞ � iη� sgnðμ� εKSmk�qÞ
;

(12)

In Eq. (11) Wc
GG0 ðqÞ is the static component of the screened

Coulomb interaction. In particular, gnkGG0 are smooth functions of q
for ω far from ΩGG0 , where the PPA is justified.
For small G vectors, the correlation part of the screened

potential, Wc
GG0 ðqÞ shows a sharp q dependence due to the

behaviour of both the bare interaction vG(q) and the inverse
dielectric function ϵ�1

GG0 ðqÞ, as shown in Fig. 1. For this reason,
following a similar procedure already applied to Σxnk , we discretize
Eq. (11) as

ΣcnkðωÞ ¼
1

NqΩ

X
G;G0 ;q

gnkGG0 ðq;ωÞWc
GG0 ðqÞ; (13)

where

Wc
GG0 ðqÞ ¼ 1

DΓ

Z
DΓ

dq0Wc
GG0 ðqþ q0Þ (14)

is the average of the correlation part of the screened potential in the
mini-BZ around q of the Monkhorst–Pack grid. The evaluation of the
correlation part of the self-energy via Eq. (14) is referred to in the
following as the W-av method. The integrals in Eq. (14) are calculated
using a 2D Monte Carlo integration method, whereWc

GG0 ðqþ q0Þ is
evaluated considering typically ≈ 106q0 points in the region around Γ
(red area of Fig. 2) making use of an interpolation scheme, that is
discussed in details in the next section. The number of random
points used to evaluate the integrals guarantees a statistical error
that does not interfere with the accuracy of the calculation. In
practice, the Monte Carlo average is performed for a limited number
of matrix elements of W such that jGj2=2< EW�av

cut , i.e., for the matrix
elements presenting a sharp behaviour as a function of q, while for
the remaining G vectors the screening is evaluated on the q grid
determined by the k-point sampling.
Importantly, the W-average correction performed for

jGj2=2< EW�av
cut is applied to every q point of the BZ, at variance

with other proposed methods where corrections are applied to
the q= 0 term only35,36,38.
We note the W-av method, here derived along with the PPA,

may be easily generalized to full-frequency treatments of the self-
energy, by averaging the dynamical screened interaction, and not
only its static part, with a generalized version of Eq. (14). However,
this is out of the scope of this work.

Interpolation of the static screening
In this Section, we describe a procedure to interpolate the
correlation part of the static screened potential Wc

GG0 ðqÞ as a
function of q, for the computation of the average Wc

GG0 according
to Eq. (14). The head of the screened potential,Wc

00, can be exactly
written as:

Wc
00ðqÞ ¼

v0ðqÞf ðqÞv0ðqÞ
1� v0ðqÞf ðqÞ ; (15)

where f(q) is an auxiliary function defined in the Supplementary
Methods. The expression of Eq. (15) suggests that it is possible to
use f(q) for the interpolation of Wc

00ðqÞ. In fact, while Wc
00ðqÞ

shows a sharp behavour as a function of q, the function f(q) is
smoother, as it resembles the irreducible response function χ000ðqÞ
plus some corrections due to local-field contributions. In fact,
f ðqÞ ¼ χ000ðqÞ if local field effects are neglected. Guided by this
argument, we propose to represent the matrix elements of the
static screening as

Wc
GG0 ðqþ q0Þ
¼ vGðqþ q0ÞfGG0 ðqþ q0ÞvG0 ðqþ q0Þ

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vGðqþ q0Þp

fGG0 ðqþ q0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vG0 ðqþ q0Þp ;

(16)

where the Coulomb interaction vG is given by Eq. (7) and fGG0 is an
auxiliary function. We note that Eq. (16) is the simplest general-
ization of Eq. (15) for the case G ≠ 0, G0 ≠ 0. We remind that in our
notation q is a point of the Monkhorst-Pack grid, while q0 belongs
to DΓ (red region in Fig. 2). By inverting Eq. (16) on the q-points of
the mesh we have:

fGG0 ðqÞ ¼ Wc
GG0 ðqÞffiffiffiffiffiffiffiffiffi

vGðqÞ
p ffiffiffiffiffiffiffiffiffiffi

vG0 ðqÞ
p

´ Wc
GGðqÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
vGðqÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
vG0 ðqÞp� ��1

:

(17)

In order to compute fGG0 ðqþ q0Þ without requiring a dense mesh
of q points, the function is numerically determined by interpolat-
ing between the given q point and its four nearest neighbours in
reciprocal lattice coordinates v. A sketch of the interpolation
scheme is shown in Fig. 2.

Fig. 2 Graphical representation of the 6 × 6 × 1 Monkhorst–Pack
sampling of an hexagonal units cell. In the left panel, the reciprocal
space is represented in cartesian coordinates (q), in the right panel
in reciprocal lattice coordinates (v). A Monkhorst–Pack grid is always
rectangular (or squared) in reciprocal lattice coordinates. The BZ in
both representations are highlighted with thick orange lines.
Smaller hexagons (squares) represent the mini-BZ of the q sampling
in cartesian (reciprocal lattice) coordinates. The mini-BZ at Γ is
highlighted in red, while an example at q ≠ 0 (v ≠ 0) in blue. Black
lines connect the q point with its nearest neighbours in reciprocal
lattice coordinates, which are used for the interpolation.
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The auxiliary function is parametrized as:

fGG0 ðvþ v0Þ � fGG0 ðvÞ þ fGG0 ðvÞ � v0
þv0 � fGG0 ðvÞ � v0;

(18)

where

fGG0 ðvÞ ¼ f 1GG0 ðvÞ f 2GG0 ðvÞ
� �

(19)

and,

fGG0 ðvÞ ¼ f 11GG0 ðvÞ f 12GG0 ðvÞ
f 21GG0 ðvÞ f 22GG0 ðvÞ

" #
; (20)

v and v0 being q and q0 in reciprocal lattice coordinates. The
polynomial dependence of fGG0 ðvþ v0Þ with respect to v0 is
inspired by the Taylor expansion of fGG0 around v. In Eq. (18), there
are six coefficients that must be determined. As there are only four
nearest neighbours, thus four conditions to apply, we set
for simplicity f 12GG0 ðvÞ ¼ f 21GG0 ðvÞ ¼ 0. This choice corresponds to
adopt a bilinear interpolation.
We note that f00(q→ 0) is the most relevant element in the

integration of the self-energy35. For semiconductors, it is possible
to exploit the known behaviour limq!0 f 00ðqÞ / jqj2 (see Supple-
mentary Methods and ref. 49) to impose a specific and more
accurate functional form to the head (G= 0 and G0 ¼ 0) at q= 0.
Following the model for the inverse dielectric function adopted by
Ismail-Beigi28 we consider for f 00ðv0Þ the expression:

f 00ðv0Þ � q0 � f lim � q0e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2v021 þβ2v022

p
: (21)

where f lim is a 2 × 2 tensor which describes the anisotropy of χ000
and ofWc

00, and q0 ¼ q0ðv0Þ. We note that in Eq. (21) the f lim tensor
is represented in cartesian coordinates. However, we stress that
the representation basis is arbitrary, as the tensorial scalar product
does not depend on the coordinate choice. This choice, differently
from the reciprocal lattice unit representation, makes the f lim
proportional to the identity matrix in the case of isotropic systems.
We can partially account for the anisotropy of the auxiliary
function by keeping the diagonal form (f xylim ¼ f yxlim ¼ 0) but
relaxing the proportionality to the identity matrix (f xxlim ≠ f yylim).
By substituting Eq. (21) into Eq. (17) and taking the ∣q∣→ 0 limit

along the x and y directions, respectively (the periodic directions),

we have

f xxlim ¼ Wc
00ðq0x!0;q0y¼0Þ

ð2πLÞ2

f yylim ¼ Wc
00ðq0x¼0;q0y!0Þ

ð2πLÞ2

8><
>:

(22)

Otherwise, we may neglect the anisotropy of the auxiliary function
adding the following approximation: f xxlim � f yylim � f lim, where

f lim ¼ Wc
00ðq0 ! 0Þ
ð2πLÞ2 : (23)

In Eq. (23), the limit is performed along the in-plane 110
cartesian direction, in order to partially average between the x and
y directions. The α and β coefficients in Eq. (21) are obtained by
interpolation, using the nearest neighbours of the q= 0 point. We
note there are only two independent nearest-neighbour condi-
tions to be applied, due to the symmetry property f00(q)= f00(−q)
[which can be derived from the symmetry property
χ0GG0 ðqÞ ¼ χ0�G0�Gð�qÞ].

Accuracy of the interpolation
We now present the results obtained with the interpolation
scheme derived in “Methods” for three prototype monolayer
materials starting from the transition metal dicalcogenide MoS2.
Electronic properties of MoS2 have been extensively studied in the
literature, including several calculations using the G0W0

approach31,34,50,51. It is a direct gap material with hexagonal
structure having the gap localized at the K=K 0 point in the BZ. The
valence band at K=K 0 is split due to spin-orbit coupling52, but since
we are interested in the convergence behaviour with respect to
the q-point sampling, and for sake of simplicity, we have not
included spin-orbit effects in the present calculations. In addition,
MoS2 has been used to test two other convergence-accelerator
schemes35,38, which allows for a direct comparison with our
approach.
In Fig. 3, we show some matrix elements of the correlation part

of the screened potential Wc
GG0 ðqÞ and the auxiliary function fGG0

[see Eq. (17)] as a function of the momentum transfer q. The
interpolation functions (orange lines) are computed starting from
the data on a coarse grid (6 × 6 × 1), and compared with the same
quantities computed with a denser grid (60 × 60 × 1), taken here

Fig. 3 Selected matrix elements of the correlation part of the screened potential (upper panels) and of the auxiliary function (lower
panels) for the MoS2 monolayer. Squares (crosses) are the numerical values obtained with a 6 × 6 × 1 (60 × 60 × 1) Monkorst–Pack grid. The
interpolated functions between the points of the coarser mesh are plot with orange lines. The grey-shaded areas represent the values of the
integral of Wc when a simple trapezoidal rule is applied to the coarser grid (see the text for details about the missing contribution for
G ¼ G0 ¼ 0 and q ≈ 0). The orange-shaded area represent the values of the integral of Wc obtained with the W-av method. Different domains
of integration of the W-av method (which in 2D corresponds to the hexagons in the left panel of Fig. 2) are here separated with vertical black
lines. We note the interpolation is discontinuous at the domainʼs border, as the interpolation procedure is applied at each domain separately.
We remember that z here is the non-periodic direction. The auxiliary functions are multiplied by a factor 102 for clarity.
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as a benchmark. The matrix element ofW contributing the most to
the GW correction is the G ¼ G0 ¼ 0 term (Fig. 3 left panels), being
Wc

GG0 at least two order of magnitude larger than the other
elements. As shown in Fig. 3, for the G ¼ G0 ¼ 0 element there is a
very good agreement between the results obtained interpolating
the coarser grid (orange line) and the values calculated using the
denser grid. For all the matrix elements considered, the auxiliary
function fGG0 is smoother than Wc

GG0 which supports the choice of
interpolating fGG0 instead of Wc

GG0 . Fig. 3
shows no clear trend between the interpolation accuracy of fGG0

and of Wc
GG0 , in particular in the region q ≈ 0. Since the different G-

components of the bare Coulomb potential, Eq. (7), have different
limits and slopes for ∣q∣→ 0, the error associated with the
interpolation of fGG0 can be both enhanced or quenched when
propagated to Wc

GG0 . Despite this, we find a very good agreement
between the interpolated values of Wc

GG0 and the results obtained
with the denser grid for all the considered matrix elements.
The grey shaded areas represent the integrals of Wc

GG0 as
obtained by applying the trapezoidal rule to the coarser grid
together with the regularization of the Coulomb potential at
G ¼ G0 ¼ q ¼ 0, given by Eq. (9). For the sake of comparison, the
same integrals, now obtained by using the interpolation, are
highlighted in orange. The trapezoidal rule, due to the regulariza-
tion of the bare Coulomb potential, misses completely the integral
contribution at G ¼ G0 ¼ 0 because of the vanishing value of
½ϵ�1

00 ðq ¼ 0Þ � 1�, while v0ðq ¼ 0Þ remains finite.
Therefore, averaging the whole Wc, as we do in Eq. (14), instead

of averaging v, Eq. (9), and multiplying by ½ϵ�1
00 ðqÞ � 1�, is

mandatory to have a contribution different from zero in this
region.
We also note that the trapezoidal rule misses the integral

contributions of Wc
GG0 for G= 0 or G0 ¼ 0 (wings) in the long-

wavelength limit (q→ 0), since Wc
GG0 ðqÞ ! 0 as q→ 0. Finally,

when G;G0 ≠ 0, the trapezoidal rule overestimate the integral in
the region q ≈ 0. The orange areas, obtained with the interpolation
functions, give instead a good description of the areas under the
dense grid data. This justifies the accuracy of the interpolation
method with fairly coarse grids, as detailed in the following.

Convergence of the fundamental gap
In Fig. 4, we show the results for the QP band gap as a function of
the q-point sampling for MoS2, hBN, and phosphorene. As for the
case of MoS2, also hBN53–59 and phosphorene monolayer23,60,61

have been extensively studied using GW approach. Moreover, due
to its high anisotropy, the phosphorene monolayer is an ideal
system to test the two proposed treatments of the fGG0 anisotropy,
given in Eqs. (23) and (22).
In Fig. 4, the convergence of the fundamental gap for the three

materials as a function of the q-sampling is shown using the
proposed accelerated method (W-av) and the v-av method. In the
latter case, only the q=G= 0 term of the Coulomb interaction
has been averaged, in order to regularize the Coulomb
divergence. We verified that the use of the v-av method to treat
the q ≠ 0 an G ≠ 0 terms of the Coulomb interaction does not
significantly affect the results of the fundamental gap for the
considered systems. The v-av method shows a very slow
convergence with respect to Nk, as expected, and the gaps in
the limit of an infinitely dense grids have been obtained by using
an 1/Nk extrapolation. For all the three cases we note that the gap
is overestimated when unconverged grids are used, mainly due to
the lack of the long wavelength contributions of the correlation
parts of the screened potential, as explained in the previous
section (see Fig. 3). Using the v-av method, to obtain a gap value
within less than ±50 meV with respect to the extrapolated value,
k-grids of 54 × 54 × 1, 36 × 36 × 1, and 36 × 50 × 1 are required for
MoS2, hBN, and phosphorene, respectively.

With the proposed W-av method, the convergence of the gaps
is greatly accelerated, and we obtain converged results already
using 6 × 6 × 1, 6 × 6 × 1 and 8 × 12 × 1 grids for MoS2, hBN, and
phosphorene, respectively, comparable with those required to
obtain converged DFT results. These grids are respectively 80, 40
and 20 times smaller than the ones required to have similar
accuracy without acceleration. As an example, the time-to-solution
(on a single node) for the calculation of the converged GW energy
gap in the case of MoS2, reduces from about 11.5 h to less than a
minute, thanks to the reduction of the mesh-size (from 54 × 54 to
6 × 6) obtained through the application of the W-av method.
Converged results using similar size of k-grids were also obtained
with alternative accelerator schemes36,38. However, within the
present method, differently from the other proposed strate-
gies36,38, no additional sub-sampling points are required to be
computed in the region q ≈ 0.
The orange dots in Fig. 4 are obtained with a parametrization of

the head of the auxiliary function given by Eq. (23), which
accounts for the anisotropy of the system by simply interpolating
along the direction (110). Nevertheless, for phosphorene, that is

Fig. 4 Convergence of the quasiparticle band gap of MoS2 (upper
panel), hBN (middle panel), and phosphorene (lower panel) with
respect to the number of sampling points of the BZ. Blue lines
indicate results obtained with standard integration methods. The
extrapolated values are indicated with an horizontal dashed line
(see the text for more details about the extrapolation procedure).
Orange lines are the results obtained with the W-av method. For the
case of phosphorene, red squares indicate results obtained with the
W-av method, in which the anisotropic behaviour of the screened
potential is included through Eq. (23). The grey shaded regions
show the converge tolerance (±50 meV) and are centred at the
extrapolated values.
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highly anisotropic, we have also taken explicitly into account the
anisotropy of Wc, using a parametrization of the auxiliary function
given by Eq. (22) (red dots). Although the long-wavelength limits
of Wc

00 are different, the average of the correlation part of the
potential, see Eq. (14), is very similar in the two schemes and the
resulting quasiparticle corrections do not show substantial
differences. Despite the present results for phosphorene show
that the explicit anisotropic treatment does not affect the value of
the computed band gap, this does not exclude the fact that it can
be potentially relevant for other systems and deserves further
investigation.
Next, we turn the attention on the role of the number of matrix

elements of Wc
GG0 ðqÞ averaged through Eq. (14), identified by the

parameter Eavcut . In Fig. 5, we plot the convergence of the band gap
of MoS2 with respect to Eavcut , or, alternatively, with respect to the
number of G shells for which the averaging procedure is
employed. In the plot, points at Eavcut ¼ 0 refer to gaps obtained
with the v-av method, i.e., blue triangles shown in the top panel of
Fig. 4. The W averaging of the first element gives the largest
contribution to the convergence acceleration, closing the gap to
1.28 and 0.60 eV for the 6 × 6 × 1 and 12 × 12 × 1 grids,
respectively. The W averaging of the first G⊥ matrix elements is
also important to obtain converged results with coarser grids. By
looking at Fig. 3, it is evident that the standard integration
technique (black shaded area) misses the q= 0 contribution of the
wing elements, as Wc

0G?ðq ! 0Þ ¼ 0. The W-av method (orange
shaded area) provides instead a finite contribution, improving the
convergence trend. In particular, the coarser the grid, the more
important is the averaging of Wc

G?G0
?
, as shown by the comparison

of the 6 × 6 × 1 with the 12 × 12 × 1 grids. Still, in both cases, the
convergence is reached for a small number of G shells, which
translates into a nearly negligible added computational cost
required to perform the averaging of the screened potential.
According to our results, Eavcut � 1–2 Ry is a reasonable choice for
all the systems considered.

Comparison with the literature
Finally, in Table 1, we show the G0W0 converged gaps of MoS2,
hBN, and phosphorene and compare them with the data present
in the literature. We emphasize that the results presented in Table
1 have been obtained with an increased number of bands and
cutoff energy of the dielectric function with respect to the data
shown in the previous figures, as explained in detail in section
“Computational details”. The MoS2 gaps found in the literature
ranges from 2.41 to 2.78 eV. Our value, 2.62 eV, lies within this
range. Instead, the fundamental gaps of hBN found in the
literature differ considerably from each other, with discrepancies
most likely due to the different approximations employed in the

calculations. Coming to the case of phosphorene, the gap
computed within this work is generally in agreement with the
results found in the literature.35,36,62,63 Only the value found in
ref. 64 deviates significantly from the others. Notably, in this work
the fundamental gap of the periodic structure is obtained by
extrapolating the thermodynamic limit from finite size systems of
increasing size, at variance with the other works, where a periodic
structure is considered. Such extrapolation procedure may be the
cause of the observed discrepancy.

DISCUSSION
Accurate results for the calculation of quasiparticle energies in the
GW approximation for 2D semiconductors can be obtained only
by using very large k-point grids, making calculations computa-
tionally very demanding. We have provided here a technique
based on a stochastic averaging and interpolation of the screened
potential to accelerate the convergence of the self energy with
respect to the q-point sampling. We have tested the proposed
scheme for the calculation of the QP gap of three prototypical
monolayer semiconductors: MoS2, hBN, and phosphorene. We find
that grids such as 6 × 6 × 1, 6 × 6 × 1 and 8 × 12 × 1 are enough to
obtain converged results for the fundamental gap up to 50 meV
for MoS2, hBN, and phosphorene, respectively. These grids are 80,
40 and 20 times smaller than those required to achieve a similar
accuracy when averaging only the bare coulomb potential (v-av
method). Taking the k and q grids to be identical, G0W0 typically
scales65 as N2

k . When this is the case, with the proposed method
the computational cost of a G0W0 calculation is reduced by at least
two orders of magnitude, without loss of accuracy. The proposed
W-av method is able to describe the anisotropy of the screened
potential at different levels of approximations, and differently
from other methods recently proposed does not rely on any sub-
sampling of the BZ.
The possibility to extend the present methodology to metals

and systems with different dimensionalities (1D or 3D) is
envisaged and will be explored in a future research.

METHODS
Computational details
DFT calculations were performed using a plane wave basis set as
implemented in the Quantum ESPRESSO package66, and using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional67.
We have considered supercells with an interlayer distance
L= 10 Å for MoS2 and L= 15 Å for hBN and phosphorene, which
are enough to obtain converged results with respect to the cell
size, in agreement with ref. 35. The kinetic energy cutoff for the
wavefunctions was set to 60 Ry and we adopted norm-conserving
pseudopotentials to model the electron-ion interaction.
G0W0 calculations were performed with the Yambo pack-

age40,41. In the calculations reported in Figs. 1, 3–5, we used a
cutoff of 5 Ry for the size of the dielectric matrix, including up to
400 states in the sum-over-state of the response function. The

Fig. 5 Convergence of the quasiparticle band gap of MoS2
obtained with the W-av method with respect to the cutoff energy
of the correction. In the upper x-axis it is shown the numbers of G
shells corrected. Orange (green) lines indicate results obtained with
the 6 × 6 × 1 (12 × 12 × 1) Monkorst–Pack grid. The vertical dashed
line indicates the Eavcut used in Fig. 4.

Table 1. Converged G0W0 gaps of MoS2, hBN, and phosphorene as
obtained within our work and found in the literature.

This work Literature

G0W0 G0W0

MoS2 2.62 2.5435, 2.7731, 2.7850

2.4151, 2.5638

hBN 6.82 7.0635, 7.3253, 7.4056, 6.0058

Phosphorene 2.04 2.0335, 2.0436, 1.5664

2.0762, 1.9463
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same number of states has been employed in the calculation of
the correlation part of the self energy. To accelerate the
convergence with respect to the number of empty states we
have used the algorithm described in refs. 41,68. Despite the cutoff
used to represent the dielectric matrix is not enough to provide
highly converged QP properties, it is sufficient to provide accurate
convergence trends with respect to the q-sampling. In the
calculations reported in Table 1, we included up to 600 states
for MoS2 and phosphorene, while 1200 for hBN, both in the
response function and in the Green’s function, with a size of the
dielectric matrix of 25 Ry. We employed k-point grids of 9 × 9 × 1,
12 × 12 × 1, and 10 × 14 × 1 for MoS2, hBN and phosphorene,
respectively.

DATA AVAILABILITY
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